ГлавнаяМатематикаОдночлены и многочлены ⇒ Разложение многочленов

Математика - это просто!

ОДНОЧЛЕНЫ и МНОГОЧЛЕНЫ
· Степень числа
· Одночлен
· Многочлен
· Разложение многочлена
· Умножение-деление многочленов
· Разность квадратов
· Квадрат суммы-разности
· Сумма и разность кубов
· Квадратный корень
· Иррациональные и комплексные числа
НАТУРАЛЬНЫЕ ЧИСЛА
ДРОБИ
УРАВНЕНИЯ и ТОЖДЕСТВА
ФУНКЦИИ
ТРИГОНОМЕТРИЯ

Онлайн тесты по ЕГЭ

Разложение многочленов


Многочлены можно упрощать посредством вынесения общего множителя за скобки или способом группировки. Все делается по аналогии с натуральными числами, требуется лишь больше внимания, поскольку выражения с многочленами достаточно громоздки.

Распределительный закон умножения относительно сложения отлично подходит для вынесения общего множителя за скобки:

Am+Bm+Cm = m(A+B+C)

Многочлен можно представить, как сумму одночленов, и выделить общий множитель, если таковой имеется:

10A5B4+8A3B2-4A2B3
2A2B2·5A3B2 + 2A2B2·4A + 2A2B2·(-2B)
2A2B2·(5A3B2 + 4A + (-2B))

Общим множителем может быть не только одночлен, но и многочлен:

2(A+2B)-3C(2B+A)
(A+2B)(2-3C)

Способ группировки

Члены многочлена можно объединять в группы, которые имеют общий множитель, которые в свою очередь, также будут многочленом.

Понять такое определение достаточно трудно, да и не нужно - рассмотрим простенький пример, после которого, сказанное выше не будет уже такой абракадаброй.

3A2+A3B-9C3+3ABC

Первые два члена многочлена имеют общий множитель A2, а третий и четвертый - 3С:

3A3+A3B+9CA+3ABC
A2·3A+A2·AB+3C·3A+3C·AB
A2·(3A+AB)+3C·(3A+AB)
(A2+3C)·(3A+AB)

Объединяем первые два члена и выносим за скобки их общий множитель A2, то же делаем и с последними двумя членами, вынося за скобки 3С. После этого обращем внимание, что в получившемся многочлене имеется еще один множитель-многочлен, который снова выносим за скобки.

В начало страницы