ГлавнаяХимияРеакции полимеризации

Химия - это просто

Популярно о химии
· Что такое химия
· Периодическая таблица
ОРГАНИЧЕСКАЯ ХИМИЯ
· Углеводороды
· Алканы
· Алкены
· Алкины
· Ароматические углеводороды
· Функциональные группы
· Фракционная перегонка нефти
· Полимеры
· Реакции полимеризации
· Реакции поликонденсации
· Рециркуляция пластмасс
ОБЩАЯ ХИМИЯ
НЕОРГАНИЧЕСКАЯ ХИМИЯ

Окислительно-восстановительные реакции

Реакции полимеризации


Синтетические полимеры (произведенные искусственным путем) химическая промышленность получает при помощи реакций полимеризации и поликонденсации.

В основе реакции полимеризации лежит процесс соединения (при помощи ковалентных связей) друг с другом мономеров (молекул низкомолекулярного соединения), которые и формируют высокомолекулярное соединение (синтетический полимер).

В ходе процесса полимеризации происходит раскрытие двойных связей в молекулах непредельных углеводородов, которые затем соединяются друг с другом в одну макромолекулу гигантских размеров. При разрыве двойной связи высвобождается атом с высокой реакционной активностью, называемый радикалом, у которого имеется непарный электрон. После этого, радикал соединяется с другим радикалом (при этом оба они получают парные электроны), давая тем самым старт образованию полимерной цепи.

Полиэтилен

Рассмотреть процесс полимеризации удобнее всего на примере полиэтилена, являющегося самым простым синтетическим полимером.

На первом этапе выполняется реакция дегидрирования, когда при высокой температуре в присутствии металлического катализатора этан превращается в этилен (от молекулы этана отщепляется два атома водорода, в результате чего формируется двойная связь):

CH3-CH3(г)→CH2=CH2(г)+H2(г)

Образовавшийся этилен является мономером, который в дальнейшем будет использован для построения полимера (полиэтилена). Для этого этилен в присутствии катализатора подвергается высокому нагреву без доступа воздуха, что приводит к разрыву двойной углеродной связи, с образованием двух радикалов (на рисунке изображены красным цветом):

полимеризация этилена

Образовашиеся радикалы тут же начинают "поиск" еще одного электрона, чтобы восстановить разорвавшуюся связь, что приводит к соединению двух радикалов друг с другом с образованием ковалентной связи. Данный процесс идет с обеих концов молекулы, что приводит к росту цепи (молекулярная масса молекулы полиэтилена достигает 10 000 - 1 000 000 г/моль):

Виды полиэтилена, которые можно получить путем реакции полимеризации:

Полипропилен

В структурной формуле пропилена один атом водорода замещен метиловой группой. Поскольку молекула пропилена имеет двойную связь, она также может участвовать в реакциях полимеризации (по аналогии с этиленом), образуя полипропилен.

полипропилен

Коэффициент n указывает число мономерных звеньев, из которых образована макромолекула. Говорят, что n выражает степень полимеризации.

В полипропилене CH3 является функциональной группой. Меняя условия полимеризации, можно создавать молекулы с функциональными группами, которые будут располагаться по-разному(с одной стороны молекулы; по обе ее стороны; в случайном порядке), получая, таким образом, молекулы пропилена с различными свойствами. Свойства полипропилена настолько сильно зависят от расположения в его молекуле метиловой группы, что из данного полимера получаются самые разные изделия, используемые для внутренней и внешней отделки помещений, изготовления корпусов для аккумуляторных батарей, бутылок, канатов и проч.

Поливинилхлорид

В структурной формуле винилхлорида один из атомов водорода заменен атомом хлора. Из винилхлорида путем реакции полимеризации получают поливинилхлорид (ПВХ):

поливинилхлорид

ПВХ является очень прочным полимером, нашедшим широкое применение при изготовлении линолеума, игрушек, садовых шлангов, различных труб.

Полистирол

В молекуле стирола один атом водорода заменен бензольным кольцом. Из стирола при помощи реакции полимеризации получают полистирол (бесцветную твердую пластмассу с хорошими диэлектрическими свойствами):

полистирол

Основное применение полистирола: изготовление посуды, пуговиц, упаковочных и электроизоляционных материалов. Полистирол трудно поддается рециркуляции, поэтому, "зеленые" активно выступают против его применения.

Политетрафторэтилен

В молекуле тетрафторэтилена вместо атомов водорода присутствуют атомы фтора. При помощи реакции полимеризации из тетрафторэтилена получают политетрафторэтилен (тефлон или фторопласт):

Политетрафторэтилен

Политетрафторэтилен обладает высокой стойкостью к щелочным и кислым средам, высокой жаропрочностью и очень гладкой поверхностью. Основное применение: изготовление подшипников, в качестве антипригарного покрытия сковородок и кастрюль.

Некоторые другие синтетические полимеры, получаемые при помощи полимеризации:

В начало страницы